亚洲AV无码一区二区三区dⅴ,亚洲v欧美v日韩v在线观看,日韩在线一区二区三区免费视频。,久久久久综合日本精品

產(chǎn)品展示PRODUCTS

您當前的位置:首頁(yè) > 產(chǎn)品展示 > 水生態(tài)與藻類(lèi) > 水質(zhì)分析與監測 > 水環(huán)境自動(dòng)控制系統
水環(huán)境自動(dòng)控制系統
更新時(shí)間:2022-07-11
訪(fǎng)問(wèn)次數:1636
水環(huán)境自動(dòng)控制系統能夠對水溫、溶解氧、pH/CO2、鹽度等環(huán)境參數進(jìn)行監測、記錄和調節。僅需一臺電腦,即可同時(shí)對多個(gè)魚(yú)缸、水族箱的一個(gè)或者多個(gè)參數進(jìn)行同步、自動(dòng)調控,使之達到預設值或者運行自定義程序。
品牌其他品牌產(chǎn)地類(lèi)別進(jìn)口
儀器種類(lèi)在線(xiàn)型應用領(lǐng)域環(huán)保,綜合

水環(huán)境自動(dòng)控制系統能夠對水溫、溶解氧、pH/CO2、鹽度等環(huán)境參數進(jìn)行監測、記錄和調節。僅需一臺電腦,即可同時(shí)對多個(gè)魚(yú)缸、水族箱的一個(gè)或者多個(gè)參數進(jìn)行同步、自動(dòng)調控,使之達到預設值或者運行自定義程序。

61.png


工作時(shí),多臺測量設備連接到一部電腦,軟件通過(guò)藍牙(無(wú)線(xiàn))或者以太網(wǎng)(有線(xiàn))控制水泵或者電磁閥,響應測量數據進(jìn)行實(shí)時(shí)調控。

軟件支持Win10/11系統,簡(jiǎn)單易用,對于四個(gè)環(huán)境參數的任意一個(gè),它使數據記錄、傳感器校準、測量單位的更改、自動(dòng)程序的設定等步驟變得輕松友好。使用者可根據具體的研究應用自定義運行程序,包括分級調節或者正弦模式,以模擬日變化等自然波動(dòng)。而且程序能夠被保存和加載,以便進(jìn)行快速、一致性的設置。

 

功能特點(diǎn)

1.新穎直觀(guān)的軟件界面,適用于Win10Win11

2.僅需一臺電腦,通過(guò)多種傳輸方式(藍牙、以太網(wǎng)和USB)和多臺設備相連

3.內置程序編輯功能—可保存和加載自定義程序文件

4.溫度、鹽度、壓強實(shí)時(shí)補償

5.具備長(cháng)期監測/記錄/調節的性能

6.數據帶時(shí)間戳,以.csvExcel)文件格式保存

 

具體配置

1.OmniCTRL軟件

軟件既能夠和監測水環(huán)境參數的設備無(wú)縫通信,也能夠通過(guò)控制水泵/電磁閥對水環(huán)境參數進(jìn)行調節。配合相應的硬件,可同步調控不同的參數,如水溫和溶解氧;既能單向調控(參數調高或調低),又能雙向調控(參數調高和調低)。軟件實(shí)時(shí)顯示實(shí)驗過(guò)程中的每個(gè)水環(huán)境參數。所有圖表都能夠按照喜好進(jìn)行編輯,導出至Excel或保存成圖像。所有記錄數據也能夠被保存和導出成.csv文件,以便于在Excel中進(jìn)一步分析。

   

62.png


2.PowerX4工業(yè)級四位插座及遠距離藍牙適配器

PowerX4四位插座能夠實(shí)現基于軟件驅動(dòng)的控制,通過(guò)以太網(wǎng)或藍牙的方式對水泵或電磁閥的開(kāi)閉進(jìn)行控制。每個(gè)延時(shí)控制的電參數(例如輸入電壓和功耗等)能夠被軟件監測和記錄,以便于對所連接的設備進(jìn)行診斷。遠距離藍牙適配器包括1類(lèi)藍牙適配器和外接天線(xiàn),能夠將常規PC2類(lèi)藍牙)的無(wú)線(xiàn)距離翻倍。

 

63.png


3.水環(huán)境監測和控制單元

可分為溫度、溶解氧、鹽度、pH/CO2、溶解氧&溫度、鹽度&溫度、pH/CO2&溫度共計7種配置。每種配置包括相應的監測單元(溶解氧測量?jì)x、pH測量?jì)x、鹽度測量?jì)x等)和控制單元(水泵、電磁閥、管路等)。如下圖為pH/CO2自動(dòng)控制系統組成如下圖(分別為單向調控和雙向調控):

 

64.png


 

應用案例

 


 

參考文獻

1.Cline, A.J., Hamilton, S.L., and Logan, C.A. (2020). Effects of multiple climate change stressors on gene expression in blue rockfish (Sebastes mystinus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 239, 110580.

2.Duckworth, C.G., Picariello, C.R., Thomason, R.K., Patel, K.S., and Bielmyer-Fraser, G.K. (2017). Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and zinc or nickel exposure. Aquatic Toxicology 182, 120–128.

3.Hamilton, S.L., Kashef, N.S., Stafford, D.M., Mattiasen, E.G., Kapphahn, L.A., Logan, C.A., Bjorkstedt, E.P., and Sogard, S.M. (2019). Ocean acidification and hypoxia can have opposite effects on rockfish otolith growth. Journal of Experimental Marine Biology and Ecology 521, 151245.

4.Huang, X., Jiang, X., Sun, M., Dupont, S., Huang, W., Hu, M., Li, Q., and Wang, Y. (2018). Effects of copper on hemocyte parameters in the estuarine oyster Crassostrea rivularis under low pH conditions. Aquatic Toxicology 203, 61–68.

5.Khan, F.U., Hu, M., Kong, H., Shang, Y., Wang, T., Wang, X., Xu, R., Lu, W., and Wang, Y. (2020). Ocean acidification, hypoxia and warming impair digestive parameters of marine mussels. Chemosphere 256, 127096.

6.Kong, H., Wu, F., Jiang, X., Wang, T., Hu, M., Chen, J., Huang, W., Bao, Y., and Wang, Y. (2019). Nano-TiO2 impairs digestive enzyme activities of marine mussels under ocean acidification. Chemosphere 237, 124561.

7.Kraskura, K., and Nelson, J.A. (2020). Hypoxia tolerance is unrelated to swimming metabolism of wild, juvenile striped bass (Morone saxatilis). Journal of Experimental Biology 223, jeb217125.

8.Mackey, T.E., Hasler, C.T., Durhack, T., Jeffrey, J.D., Macnaughton, C.J., Ta, K., Enders, E.C., and Jeffries, K.M. (2021). Molecular and physiological responses predict acclimation limits in juvenile brook trout (Salvelinus fontinalis). Journal of Experimental Biology 224, jeb241885.

9.Murie, K.A., and Bourdeau, P.E. (2021). Energetic context determines the effects of multiple upwelling-associated stressors on sea urchin performance. Sci Rep 11, 1–12.

10.Shen, Y., Zhang, Y., Xiao, Q., Gan, Y., Wang, Y., Pang, G., Huang, Z., Yu, F., Luo, X., Ke, C., et al. (2021). Distinct metabolic shifts occur during the transition between normoxia and hypoxia in the hybrid and its maternal abalone. Science of The Total Environment 794, 148698.

11.Shrivastava, J., Ndugwa, M., Caneos, W., and De Boeck, G. (2019). Physiological trade-offs, acid-base balance and ion-osmoregulatory plasticity in European sea bass (Dicentrarchus labrax) juveniles under complex scenarios of salinity variation, ocean acidification and high ammonia challenge. Aquatic Toxicology 212, 54–69.

12.Siddiqui, S., and Bielmyer-Fraser, G.K. (2015). Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and copper exposure. Aquatic Toxicology 167, 228–239.

13.Sui, Y., Zheng, L., Chen, Y., Xue, Z., Cao, Y., Mohsen, M., Nguyen, H., Zhang, S., Lv, L., and Wang, C. (2022). Combined effects of short term exposure to seawater acidification and microplastics on the early development of the oyster Crassostrea rivularis. Aquaculture 549, 737746.

14.Wingert, C.J., and Cochlan, W.P. (2021). Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom Pseudo-nitzschia australis from the California Current System. Harmful Algae 107, 102030.

15.Zrini, Z.A., Sandrelli, R.M., and Gamperl, A.K. (2021). Does hydrostatic pressure influence lumpfish (Cyclopterus lumpus) heart rate and its response to environmental challenges? Conservation Physiology 9, coab058.


留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話(huà):

  • 常用郵箱:

  • 省份:

  • 詳細地址:

  • 補充說(shuō)明:

  • 驗證碼:

    請輸入計算結果(填寫(xiě)阿拉伯數字),如:三加四=7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |